LTR	DESCRIPTION	DATE	APPROVED

REV																							
PAGE																							
REV																							
PAGE	18	19	20	21	22	23																	
REV STATUS OF PAGES			REV																				
			PAGE			1	2	3	4	5	6	7		8	9	10	11	12	13	14	15	16	17
PMIC N/A PREPARED BY Phu H. Nguyen												DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 http://www.landandmaritime.dla.mil/											
Original	MM 3-01-	drawi D		CH	CKE	BY	u	guy				MICROCIRCUIT, LINEAR, 1.2 GHz CLOCK DISTRIBUTION IC, 1.6 GHz INPUTS, DIVIDERS, FIVE OUTPUTS, MONOLITHIC SILICON											
												V62/12656											
			REV									PAGE 1 OF 23											

1. SCOPE
1.1 Scope. This drawing documents the general requirements of a high performance 1.2 GHz clock distribution IC, 1.6 GHz inputs, dividers, five outputs microcircuit, with an operating temperature range of $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
1.2 Vendor Item Drawing Administrative Control Number. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

1.2.1 Device type(s).

Device type
01

Generic

AD9512-EP

Circuit function

1.2 GHz clock distribution IC, 1.6 GHz inputs, dividers, five outputs
1.2.2 Case outline(s). The case outlines are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
	48	JEDEC MO-220-VKKD-2	Lead Frame Chip Scale Package

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator

A
B
C
C
D
E
Z

Material
Hot solder dip
Tin-lead plate
Gold plate
Palladium
Gold flash palladium
Other

```
1.3 Absolute maximum ratings. 1/
\begin{tabular}{|c|c|}
\hline VS with respect to GND & -0.3 V to +3.6 V \\
\hline DSYNC/DSYNCB with respect to GND & -0.3 V to \(\mathrm{V}_{\mathrm{S}}+0.3 \mathrm{~V}\) \\
\hline RSET with respect to GND & -0.3 V to \(\mathrm{V}_{\mathrm{S}}+0.3 \mathrm{~V}\) \\
\hline CLK1, CLK1B, CLK2, CLK2B with respect to GND & -0.3 V to \(\mathrm{V}_{\mathrm{S}}+0.3 \mathrm{~V}\) \\
\hline CLK1 with respect to CLK1B & -1.2 V to +1.2 V \\
\hline CLK2 with respect to CLK2B & -1.2 V to +1.2 V \\
\hline SCLK, SDIO, SDO, CSB with respect to GND & -0.3 V to \(\mathrm{V}_{\mathrm{S}}+0.3 \mathrm{~V}\) \\
\hline OUT0, OUT1, OUT2, OUT3, OUT4 with respect to GND & -0.3 V to \(\mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}\) \\
\hline FUNCTION with respect to GND & -0.3 V to \(\mathrm{V}_{\mathrm{S}}+0.3 \mathrm{~V}\) \\
\hline SYNC STATUS with respect to GND & -0.3 V to \(\mathrm{V}_{\mathrm{S}}+0.3 \mathrm{~V}\) \\
\hline Storage temperature range & \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline Junction temperature & \(150^{\circ} \mathrm{C}\) \\
\hline Lead temperature (10 sec) & \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
```

1.4 Thermal characteristics

Thermal resistance $\underline{2} /$

Case outline	θ_{JA}	Unit
Case X	28.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

2. APPLICABLE DOCUMENTS
```
JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)
JEP95 - Registered and Standard Outlines for Semiconductor Devices
JESD51-7 - High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
```

(Copies of these documents are available online at http:/www.jedec.org or from JEDEC - Solid State Technology Association, 3103 North 10th Street, Suite 240-S, Arlington, VA 22201.)

3. REQUIREMENTS

3.1 Marking. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
A. Manufacturer's name, CAGE code, or logo
B. Pin 1 identifier
C. ESDS identification (optional)

1/ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
2/ Thermal impedance measurements were taken on a 4-layer board in still air, in accordance with EIA/JESD51-7.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE 3

3.2 Unit container. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.
3.3 Electrical characteristics. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
3.5 Diagrams.
3.5.1 Case outline. The case outline shall be as shown in 1.2.2 and figure 1.
3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2.
3.5.3 Terminal function. The terminal function shall be as shown in figure 3.
3.5.4 Functional block diagram. The functional block diagram shall be as shown in figure 4.
3.5.5 LVPECL differential output swing vs frequency. The LVPECL differential output swing vs frequency shall be as shown in figure 5.
3.5.6 LVDS differential output swing vs frequency. The LVDS differential output swing vs frequency shall be as shown in figure 6.
3.5.7 CMOS single ended output swing vs frequency and load. The CMOS single ended output swing vs frequency and load shall be as shown in figure 7.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO.
		REV	PA/12656

TABLE I. Electrical performance characteristics. 1/

Test	Symbol	Test conditions 2/	Limits			Unit
			Min	Typ	Max	
CLOCK INPUTS						
Clock inputs (CLK1, CLK2) 3/						
Input frequency			0		1.6	GHz
Input sensitivity		4/		150 71		mV p-p
Input level		5/			2 8/	$\vee \mathrm{p}-\mathrm{p}$
Input common mode voltage	V_{CM}	6/	1.45	1.6	1.7	V
		At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.5	1.6	1.7	V
Input common mode range	$\mathrm{V}_{\text {CMR }}$	With 200 mV p-p signal applied, dc-coupled	1.3		1.8	V
Input sensitivity, single ended		CLK2 ac-coupled; CLK2B ac bypassed to RF ground		150		$\mathrm{mV} \mathrm{p}-\mathrm{p}$
Input resistance		Self-biased	4.0	4.8	5.6	$\mathrm{k} \Omega$
Input capacitance				2		pF

CLOCK OUTPUTS
LVPECL clock outputs (Termination $=50 \Omega$ to $\mathrm{V}_{\mathrm{S}}-2 \mathrm{~V}$)

OUT0, OUT1, OUT2; Differential		Output level 0x3D (0x3E) (0x3F)[3:2] $=10 \mathrm{~b}$ See FIGURE 5				
\quad Output frequency	V_{OH}		$\mathrm{V}_{\mathrm{S}}-1.22$	$\mathrm{~V}_{\mathrm{S}}-0.98$	$\mathrm{~V}_{\mathrm{S}}-0.93$	V
Output high voltage	V_{OL}		$\mathrm{V}_{\mathrm{S}}-2.10$	$\mathrm{~V}_{\mathrm{S}}-1.80$	$\mathrm{~V}_{\mathrm{S}}-1.67$	V
Output low voltage	V_{OD}		660	810	965	mV
Output differential voltage						

LVDS clock outputs (Termination $=100 \Omega$ differential; default)

OUT3, OUT4; Differential	Vod	Output level $0 \times 40(0 \times 41)[2: 1]=01 \mathrm{~b}$ 3.5 mA termination current See FIGURE 6	250	360	$\begin{aligned} & 800 \\ & 450 \end{aligned}$	MHz
Output frequency						
Differential output voltage						
Delta $\mathrm{V}_{\text {OD }}$					25	mV
Output offset voltage	Vos	At full temperature range	1.051.125	1.23	1.375	V
		At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		1.23	1.375	V
Delta $\mathrm{V}_{\text {os }}$					25	mV
Short Circuit current	$\mathrm{I}_{\mathrm{SA}}, \mathrm{I}_{\mathrm{SB}}$	Output shorted to GND		14	24	mA
CMOS clock outputs						
OUT3, OUT4	V_{OH}	Single ended measurements; B outputs: inverted, termination open With 5 pF load each outputs, see FIGURE 7 @ 1 mA load @ 1 mA load	$\mathrm{V}_{\mathrm{S}}-0.1$			
Output frequency					250	MHz
Output voltage high						V
Output voltage low					0.1	V

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Test conditions 2/	Limits			Unit
			Min	Typ	Max	
TIMING CHARACTERISTICS						
LVPECL (Termination $=50 \Omega$ to $\mathrm{V}_{s}-2 \mathrm{~V}$, Output level 0x3D (0x3E)(0x3F)[3:2] = 10b)						
Output rise time	$t_{R P}$	20\% to 80\%, measured differentially		130	180	ps
Output fall time	t_{FP}	80\% to 20\%, measured differentially		130	180	
Propagation delay, tpeLc, CLK-TO-LVPECL OUT ${ }^{\text {/ }}$						
Divide $=$ Bypass		At full temperature range	320	490	635	ps
		At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	335	490	635	
Divide $=2$ to 32		At full temperature range	360	545	695	
		At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	375	545	695	
Variation with temperature				0.5		ps $/{ }^{\circ} \mathrm{C}$
Output skew, LVPECL outputs						
OUT1 to OUT0 on same part 10/	$\mathrm{t}_{\text {SKP }}$		70	100	140	ps
OUT1 to OUT2 on same part 10/	$\mathrm{t}_{\text {SKP }}$		15	45	80	
OUT0 to OUT2 on same part 10/	$\mathrm{t}_{\text {SKP }}$		45	65	90	
All LVPECL OUT across multiple parts 11/	$\mathrm{t}_{\text {SKP AB }}$				275	
Same LVPECL OUT across multiple parts 11/	$\mathrm{t}_{\text {SKP AB }}$				130	
LVDS (Termination = 100Ω differential, Output level 0×40 (0x41)[2:1] = 01b, 3.5 mA termination current)						
Output rise time	$\mathrm{t}_{\text {RL }}$	20\% to 80\%, measured differentially		200	350	ps
Output fall time	t_{FL}	80\% to 20%, measured differentially		210	350	
Propagation delay, t Lvds, CLK-to-LVDS OUT 9 / OUT3 to OUT4						
Divide $=$ Bypass		At full temperature range	0.97	1.33	1.59	ns
		At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.99	1.33	1.59	
Divide $=2$ to 32		At full temperature range	1.02	1.38	1.64	
		At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.04	1.38	1.64	
Variation with temperature				0.9		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$
Output skew, LVDS outputs						
OUT3 to OUT4 on same part, 10/	$\mathrm{t}_{\text {SKV }}$		-85		+270	ps
All LVDS OUTs across multiple parts 11/	tskV_AB				450	
Same LVDS OUT across multiple parts 11/	$\mathrm{t}_{\text {SKV AB }}$				325	

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE 6

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Test conditions 2/	Limits			Unit
			Min	Typ	Max	

TIMING CHARACTERISTICS-Continued.

Output rise time	$t_{\text {RC }}$	20\% to 80\%, $\mathrm{C}_{\text {LOAD }}=3 \mathrm{pF}$		681	865	ps
Output fall time	$\mathrm{t}_{\text {FC }}$	80\% to 20\%, C COAD $=3 \mathrm{pF}$		646	992	
Propagation delay, $\mathrm{t}_{\text {cmos, }}$ CLK to CMOS OUT ${ }^{\text {9/] }}$						
Divide $=$ Bypass		At full temperature range	1.0	1.39	1.71	ns
		At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.02	1.39	1.71	
Divide $=2$ to 32		At full temperature range	1.05	1.44	1.76	
		At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.07	1.44	1.76	
Variation with temperature				1		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$
Output skew, CMOS outputs						
OUT3 to OUT4 on same part, 10/	$\mathrm{t}_{\text {SKC }}$		-140	+145	+300	ps
All CMOS OUT across multiple parts 11/	$\mathrm{t}_{\text {SKC_AB }}$				650	
Same CMOS OUT across multiple parts 11/	$\mathrm{t}_{\text {SKC_AB }}$				500	
LVPECL to LVDS OUT (Everything the same; different logic type LVPECL to LVDS on same part)						
Output skew	$\mathrm{t}_{\text {SKP } \mathrm{V}}$		0.73	0.92	1.14	ns
LVPECL to CMOS OUT (Everything the same; different logic type LVPECL to CMOS on same part)						
Output skew	$\mathrm{t}_{\text {SKP }} \mathrm{C}$		0.87	1.14	1.43	ns
LVDS to CMOS OUT (Everything the same; different logic type LVDS to CMOS on same part)						
Output skew	$\mathrm{t}_{\text {SKV }} \mathrm{C}$		158	353	506	ps

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Test conditions 2/	Limits			Unit
			Min	Typ	Max	

CLOCK OUTPUT PHASE NOISE

CLK1 $=622.08 \mathrm{MHz}$, OUT $=622.08 \mathrm{MHz}$ Divide Ratio = 1 @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 KHz Offset @100 kHz Offset $>1 \mathrm{MHz}$ Offset	Input slew rate > $1 \mathrm{~V} / \mathrm{ns}$	$\begin{aligned} & -125 \\ & -132 \\ & -140 \\ & -148 \\ & -153 \\ & -154 \\ & \hline \end{aligned}$	$\mathrm{dBc} / \mathrm{Hz}$
CLK1 $=622.08 \mathrm{MHz}$, OUT $=155.52 \mathrm{MHz}$ Divide Ratio = 4 @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 KHz Offset @100 kHz Offset $>1 \mathrm{MHz}$ Offset		$\begin{aligned} & -128 \\ & -140 \\ & -148 \\ & -155 \\ & -161 \\ & -161 \end{aligned}$	$\mathrm{dBc} / \mathrm{Hz}$
CLK1 $=622.08 \mathrm{MHz}$, OUT $=38.88 \mathrm{MHz}$ Divide Ratio = 16 @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 KHz Offset @100 kHz Offset $>1 \mathrm{MHz}$ Offset		$\begin{aligned} & -135 \\ & -145 \\ & -158 \\ & -165 \\ & -165 \\ & -166 \\ & \hline \end{aligned}$	$\mathrm{dBc} / \mathrm{Hz}$
CLK1 $=491.52 \mathrm{MHz}$, OUT $=61.44 \mathrm{MHz}$ Divide Ratio = 8 @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 KHz Offset @100 kHz Offset $>1 \mathrm{MHz}$ Offset		$\begin{aligned} & -131 \\ & -142 \\ & -153 \\ & -160 \\ & -165 \\ & -165 \\ & \hline \end{aligned}$	$\mathrm{dBc} / \mathrm{Hz}$
CLK1 $=491.52 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$ Divide Ratio = 2 @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 KHz Offset @100 kHz Offset > 1 MHz Offset		$\begin{aligned} & -125 \\ & -132 \\ & -140 \\ & -151 \\ & -157 \\ & -158 \\ & \hline \end{aligned}$	$\mathrm{dBc} / \mathrm{Hz}$

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE 8

TABLE I. Electrical performance characteristics - Continued. 1/

| Test | Symbol | Test conditions | Limits | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $\underline{2} /$ | Min | Typ | Max |

CLOCK OUTPUT PHASE NOISE- Continued.
CLK1 to LVPECL and additive phase noise - Continued.

CLK1 $=245.76 \mathrm{MHz}$, OUT $=61.44 \mathrm{MHz}$ Divide Ratio = 4 @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 KHz Offset @100 kHz Offset > 1 MHz Offset				$\begin{aligned} & -138 \\ & -144 \\ & -154 \\ & -163 \\ & -164 \\ & -165 \\ & \hline \end{aligned}$		dBC/Hz
CLK1 to LVDS additive phase noise						
Divide Ratio = 1 @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 KHz Offset @100 kHz Offset @1 MHz Offset > 10 MHz Offset				$\begin{aligned} & -100 \\ & -110 \\ & -118 \\ & -129 \\ & -135 \\ & -140 \\ & -148 \\ & \hline \end{aligned}$		dBC/Hz
CLK1 $=622.08 \mathrm{MHz}$, OUT $=155.52 \mathrm{MHz}$ Divide Ratio = 4 @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 KHz Offset @100 kHz Offset @1 MHz Offset $>10 \mathrm{MHz}$ Offset				$\begin{aligned} & -112 \\ & -122 \\ & -132 \\ & -142 \\ & -148 \\ & -152 \\ & -155 \\ & \hline \end{aligned}$		dBC/Hz
CLK1 $=491.52 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$ Divide Ratio = 2 @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 KHz Offset @100 kHz Offset @1 MHz Offset > 10 MHz Offset				$\begin{aligned} & -108 \\ & -118 \\ & -128 \\ & -138 \\ & -145 \\ & -148 \\ & -154 \end{aligned}$		dBC/Hz

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE 9

TABLE I. Electrical performance characteristics - Continued. 1/

CLOCK OUTPUT PHASE NOISE- Continued.

CLK1 to LVDS additive phase noise - Continued.

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO.
V62/12656			
		REV	PAGE 10

TABLE I. Electrical performance characteristics - Continued. 1/

| Test | Symbol | Test conditions | Limits | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $\underline{2} /$ | Min | Typ | Max |

CLOCK OUTPUT PHASE NOISE- Continued.
CLK1 to CMOS additive phase noise

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE 11

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Test conditions 2/	Limits			Unit
		Min	Typ	Max	

CLOCK OUTPUT PHASE NOISE- Continued.

$\begin{aligned} & \text { CLK1 }=622.08 \mathrm{MHz} \\ & \text { Any LVPECL (OUT0 to OUT2) }=622.08 \mathrm{MHz}, \\ & \text { Divide ratio }=1 \end{aligned}$	$\mathrm{BW}=12 \mathrm{kHz}$ to $20 \mathrm{MHz}(\mathrm{OC}-12)$	40	fs rms
$\begin{aligned} & \text { CLK1 }=622.08 \mathrm{MHz} \\ & \quad \text { Any LVPECL (OUT0 to OUT2) }=155.52 \mathrm{MHz}, \\ & \text { Divide ratio }=4 \end{aligned}$	$\mathrm{BW}=12 \mathrm{kHz}$ to $20 \mathrm{MHz}(\mathrm{OC}-3)$	55	fs rms
$\text { CLK1 }=400 \mathrm{MHz}$ Any LVPECL (OUTO to OUT2) $=100 \mathrm{MHz}$, Divide ratio $=4$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$	215	fs rms
$\begin{aligned} & \text { CLK1 = } 400 \mathrm{MHz} \\ & \text { Any LVPECL (OUT0 to OUT2) }=100 \mathrm{MHz}, \\ & \text { Divide ratio }=4 \\ & \text { Other LVPECL }=100 \mathrm{MHz} \\ & \text { Both LVDS (OUT3, OUT4) }=100 \mathrm{MHz} \\ & \hline \end{aligned}$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)	215	fs rms
$\text { CLK1 }=400 \mathrm{MHz}$ Any LVPECL (OUT0 to OUT2) $=100 \mathrm{MHz}$, Divide ratio $=4$ Other LVPECL $=50 \mathrm{MHz}$ Both LVDS (OUT3, OUT4) $=50 \mathrm{MHz}$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)	222	fs rms
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { Any LVPECL (OUT0 to OUT2) }=100 \mathrm{MHz} \\ & \text { Divide ratio }=4 \\ & \text { Other LVPECL }=50 \mathrm{MHz} \\ & \text { Both CMOS (OUT3, OUT4) }=50 \mathrm{MHz} \text { (B outputs Off) } \end{aligned}$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)	225	fs rms
$\text { CLK1 }=400 \mathrm{MHz}$ Any LVPECL (OUTO to OUT2) $=100 \mathrm{MHz}$, Divide ratio $=4$ Other LVPECL $=50 \mathrm{MHz}$ Both CMOS (OUT3, OUT4) $=50 \mathrm{MHz}$ (B outputs On)	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)	225	fs rms

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE 12

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Test conditions$\underline{2}$	Limits			Unit
		Min	Typ	Max	
CLOCK OUTPUT PHASE NOISE- Continued.					
LVDS output additive time jitter					
$\text { CLK1 }=400 \mathrm{MHz}$ LVDS (OUT3) $=100 \mathrm{MHz}$ Divide ratio $=4$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$		264		fs rms
$\text { CLK1 }=400 \mathrm{MHz}$ LVDS (OUT4) = 100 MHz Divide ratio $=4$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$		319		fs rms
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { LVDS (OUT3) }=100 \mathrm{MHz} \\ & \text { Divide ratio }=4 \\ & \text { LVDS (OUT4) }=50 \mathrm{MHz} \\ & \text { All LVPECL }=50 \mathrm{MHz} \end{aligned}$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)		395		fs rms
$\text { CLK1 }=400 \mathrm{MHz}$ LVDS (OUT4) $=100 \mathrm{MHz}$ Divide ratio $=4$ LVDS (OUT3) $=50 \mathrm{MHz}$ All LVPECL $=50 \mathrm{MHz}$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)		395		fs rms
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { LVDS (OUT3) }=100 \mathrm{MHz} \\ & \text { Divide ratio }=4 \\ & \text { CMOS (OUT4) }=50 \mathrm{MHz} \text { (B Outputs Off) } \\ & \text { All LVPECL }=50 \mathrm{MHz} \end{aligned}$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)		367		fs rms
$\text { CLK1 }=400 \mathrm{MHz}$ LVDS (OUT4) $=100 \mathrm{MHz}$ Divide ratio $=4$ CMOS (OUT3) $=50 \mathrm{MHz}$ (B Outputs Off) All LVPECL $=50 \mathrm{MHz}$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)		367		fs rms
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \\ & \text { LVDS (OUT3) }=100 \mathrm{MHz} \\ & \text { Divide ratio }=4 \\ & \text { CMOS (OUT4) }=50 \mathrm{MHz} \text { (B Outputs On) } \\ & \text { All LVPECL }=50 \mathrm{MHz} \\ & \hline \end{aligned}$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)		548		fs rms

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE 13

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Test conditions 2/	Limits			Unit
		Min	Typ	Max	

CLOCK OUTPUT PHASE NOISE- Continued.

LVDS output additive time jitter - Continued.

$\text { CLK1 }=400 \mathrm{MHz}$ LVDS (OUT4) $=100 \mathrm{MHz}$ Divide ratio $=4$ CMOS (OUT3) $=50 \mathrm{MHz}$ (B Outputs On) All LVPECL $=50 \mathrm{MHz}$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)	548	fs rms
CMOS output additive time jitter			
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { Both CMOS (OUT3, OUT4) }=100 \mathrm{MHz}(\text { B output On }) \\ & \text { Divide ratio }=4 \end{aligned}$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$	275	
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { CMOS (OUT3) }=100 \mathrm{MHz}(\mathrm{~B} \text { output On) } \\ & \text { Divide ratio }=4 \\ & \text { All LVPECL }=50 \mathrm{MHz} \\ & \text { LVDS (OUT4) }=50 \mathrm{MHz} \\ & \hline \end{aligned}$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)	400	
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { CMOS (OUT3) }=100 \mathrm{MHz} \text { (B output On) } \\ & \text { Divide ratio }=4 \\ & \text { All LVPECL }=50 \mathrm{MHz} \\ & \text { CMOS (OUT4) }=50 \mathrm{MHz} \text { (B output Off) } \\ & \hline \end{aligned}$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)	374	
$\text { CLK1 }=400 \mathrm{MHz}$ $\begin{aligned} & \text { CMOS (OUT3) }=100 \mathrm{MHz} \text { (B output On) } \\ & \text { Divide ratio }=4 \\ & \text { All LVPECL }=50 \mathrm{MHz} \\ & \text { CMOS (OUT4) }=50 \mathrm{MHz} \text { (B output On) } \end{aligned}$	Calculated from SNR of ADC method; $\mathrm{fc}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)	555	

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE 14

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Test conditions 2/	Limits			Unit
			Min	Typ	Max	
SERIAL CONTROL PORT						
CSB, SCLK (Inputs) 12/ SERIAL CONTROL PORT						
Input logic 1 voltage			2.0			V
Input logic 0 voltage					0.8	
Input logic 1 current				110		$\mu \mathrm{A}$
Input logic 0 current					1	
Input capacitance				2		pF
SDIO (when input)						
Input logic 1 voltage			2.0			V
Input logic 0 voltage					0.8	
Input logic 1 current				10		nA
Input logic 0 current				10		
Input capacitance				2		pF
SDIO, SDO (Outputs)						
Input logic 1 voltage			2.7			V
Input logic 0 voltage					0.4	
Timing						
Clock rate (SCLK, 1/tsclk)					25	MHz
Pulse width high	tpwh		16			ns
Pulse width low	tpWL		16			
SDIO to SCLK setup	$t_{\text {DS }}$		2			
SCLK to SDIO hold	t_{DH}		1			
SCLK to valid SDIO and SDO	t_{DV}		6			
CSB to SCLK setup and hold	$\mathrm{t}_{\mathrm{s}}, \mathrm{t}_{\mathrm{H}}$		2			
CSB minimum pulse width high	tPWH		3			

FUNCTION PIN
Input characteristics 13/

Input logic 1 voltage		2.0			V
Input logic 0 voltage				0.8	
Input logic 1 current			110		$\mu \mathrm{A}$
Input logic 0 current				1	
Capacitance			2		pF
Reset timing					
Pulse width low		50			ns
SYNC timing					
Pulse width low	141	1.5			High speed clock cycles

See footnote at end of table.

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Test conditions 2/	Limits			Unit
			Min	Typ	Max	

SYNC STATUS PIN

utput characteristics						
Output voltage high	V_{OH}		2.7			V
Output voltage low	V OL				0.4	
POWER						
Power up default mode power dissipation		15/		550	600	mW
Power dissipation Full sleep power down Power down (PDB)		$\begin{aligned} & \hline 16 / \\ & \underline{17 /} \\ & \underline{18 /} \\ & \hline 19 / \\ & \hline \end{aligned}$		$\begin{aligned} & 35 \\ & 60 \end{aligned}$	$\begin{gathered} \hline 800 \\ 850 \\ 60 \\ 80 \\ \hline \end{gathered}$	mW
Power delta						
CLK1, CLK2 power down			10	15	25	mW
Divider, DIV 2 to 32 bypass		For each divider.	23	27	33	
LVPELL output power down (PD2, PD3)		For each output. Does not include dissipation in termination (PD2 only)	50	65	75	
LVDS Output power down		For each output	80	92	110	
CMOS output power down (Static)		For each output. Static (no clock)	56	70	85	
CMOS output power down (Dynamic)		For each CMOS output, single ended. Clocking at 62 MHz with 5 pF load.	115	150	190	
CMOS output power down (Dynamic)		For each CMOS output, single ended. Clocking at 125 MHz with 5 pF load.	125	165	210	

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE 16

TABLE I. Electrical performance characteristics - Continued. 1/

1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
2/ Typical (Typ) is given for $\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SET}}=4.12 \mathrm{k} \Omega$, unless otherwise noted. Minimum (Min) and Maximum (Max) values are given over full V_{S} and $\mathrm{T}_{\mathrm{A}}\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ variation.
3/ CLK1 and CLK2 are electrically identical; each can be used as either differential or single ended input.
4/ Jitter performance can be improved with high slew rates (greater swing).
5/ Larger swing turn on protection diodes and can degrade jitter performance.
6/ Self biased; enables ac coupling; at full temperature range.
7/ With a 50Ω termination, this is -12.5 dBm .
$\overline{8} /$ With a 50Ω termination, this is +10 dBm .
9/ The measurements are for CLK1. For CLK2, add approximately 25 ps.
10/This is the difference between any two similar delay paths within a single device operating at the same voltage and temperature.
11/ This is the difference between any two similar delay paths across multiple devices operating at the same voltage and temperature
12/ CSB and SCLK have $30 \mathrm{k} \Omega$ internal pull down resistor.
13/ The FUNCTION pin has a $30 \mathrm{k} \Omega$ internal pull down resistor. This pin should normally be held high. Do not let input float.
14/ High speed clock is CLK1 or CLK2, whichever is being used for distribution.
15/ Power up default state; does not include power dissipated in output load resistors. No clock.
16/ All outputs on. Three LVPECL outputs @ 800 MHz , two CMOS out @ 62 MHz (5 pF load). Does not include power dissipated in external resistors.
17 All outputs on. Three LVPECL outputs @ 800 MHz , two CMOS out @ 125 MHz (5 pF load). Does not include power dissipated in external resistors.
18/ Maximum sleep is entered by setting $0 \times 0 A[1: 0]=01 b$ and $0 \times 58[4]=1 b$. This power off all band gap references. Does not include power dissipated in terminations.
19 Set FUNCTION pin for PDB operation by setting $0 \times 58[6: 5]=11 \mathrm{~b}$. Pull PDB low. Does not include power dissipated in terminations.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. $\mathbf{1 6 2 3 6}$	DWG NO. V62/12656
		REV	PAGE 17

Case X

FIGURE 1. Case outline.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE 18

Dimensions					
Symbol	Millimeters		Symbol	Millimeters	
	Min	Max		Min	Max
A	0.80	1.00	D2/E2	4.95	5.25
A1		0.80	e	0.50 BSC	
A2	0.20 REF		e1	5.50 REF	
A3		0.05	L	0.30	0.50
b	0.18	0.30	L1		0.60
D/E	7.00 BSC		L2	0.25	
D1/E1	6.75 BSC				

NOTES:

1. All linear dimensions are in millimeters.
2. Falls within JEDEC MO-220-VKKD-2.

FIGURE 1. Case outline - Continued.

Case outline X							
Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	DSYNC	13	SYNC STATUS	25	VS	37	GND
2	DSYNCB	14	SCLK	26	OUT1B	38	GND
3	VS	15	SDIO	27	OUT1	39	VS
4	VS	16	SDO	28	VS	40	VS
5	DNC	17	CSB	29	VS	41	OUTOB
6	VS	18	VS	30	OUT4B	42	OUT0
7	CLK2	19	GND	31	OUT4	43	GND
8	CLK2B	20	OUT2B	32	VS	44	VS
9	VS	21	OUT2	33	VS	45	RSET
10	CLK1	22	VS	34	OUT3B	46	GND
11	CLK1B	23	VS	35	OUT3	47	VS
12	FUNCTION	24	GND	36	VS	48	VS

FIGURE 2. Terminal connections.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO.
V62/12656			
		REV	PAGE 19

Case outline X		
Terminal number	Mnemonic	Description
1	DSYNC	Detect Sync. Use for multichip synchronization.
2	DSYNCB	Detect Sync. Complement. Used for multichip synchronization.
$\begin{gathered} 3,4,6,9,18, \\ 22,23,25,28, \\ 29,32,33,36, \\ 39,4044,47, \\ 48 \end{gathered}$	VS	Power supply (3.3 V).
5	DNC	Do Not Connect. Do not connect to this pin.
7	CLK2	Clock input.
8	CLK2B	Complementary Clock input. Used in conjunction with CLK2.
10	CLK1	Clock input.
11	CLK1B	Complementary Clock input. Used in conjunction with CLK1.
12	FUNCTION	Multipurpose Input. Can be programmed as a reset (RESETB), sync (SYNCB), or power down (PDB) pin.
13	SYNC STATUS	Output Used to Monitor the Status of Multichip Synchronization.
14	SCLK	Serial Data Clock.
15	SDIO	Serial Data I/O.
16	SDO	Serial Data Output.
17	CSB	Serial Port Chip Select.
$\begin{gathered} \hline 19,24,37,38, \\ 43,46 \\ \hline \end{gathered}$	GND	Ground.
20	OUT2B	Complementary LVPECL Output.
21	OUT2	LVPECL Output.
26	OUT1B	Complementary LVPECL Output.
27	OUT1	LVPECL Output.
30	OUT4B	Complementary LVDS/Inverted CMOS Output.
31	OUT4	LVDS/CMOS Output.
34	OUT3B	Complementary LVDS/Inverted CMOS Output.
35	OUT3	LVDS/CMOS Output.
41	OUT0B	Complementary LVPECL Output.
42	OUTO	LVPECL Output.
45	RSET	Current Set Resistor to Ground. Nominal value $=4.12 \mathrm{k} \Omega$.
	EPAD	Exposed paddle. The exposed paddle on this package is an electrical connection as well as a thermal enhancement. For the device to function properly, the paddle must be attached to ground, GND.

FIGURE 3. Terminal function.

DLA LAND AND MARITIME COLUMBUS, OHIO

| SIZE
 A | CODE IDENT NO.
 $\mathbf{1 6 2 3 6}$ | DWG NO.
 V62/12656 |
| :---: | :---: | :--- | :---: |
| | REV | PAGE 20 |

FIGURE 4. Functional block diagram.

FIGURE 5. LVPECL differential output swing vs frequency.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE 21

FIGURE 6. LVDS differential output swing vs frequency.

FIGURE 7. CMOS single ended output swing vs frequency and load.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE 22

4. VERIFICATION

4.1 Product assurance requirements. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 Packaging. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
6.2 Configuration control. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
6.3 Suggested source(s) of supply. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Vendor item drawing administrative control number 1/	Device manufacturer CAGE code	Vendor part number
V62/12656-01XE	24355	AD9512UCPZ-EP

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code	Source of supply
24355	Analog Devices
	1 Technology Way
	P.O. Box 9106
	Norwood, MA 02062-9106

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12656
		REV	PAGE 23

